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Abstract—Ensuring nearest neighbor compliance of quantum
circuits by inserting SWAP gates has heavily been considered
in the past. Here, quantum gates are considered which work
on non-adjacent qubits. SWAP gates are applied in order to
“move” these qubits onto adjacent positions. However, a decision
how exactly the SWAPs are “moved” has mainly been made
without considering the effect a “movement” of qubits may
have on the remaining circuit. In this work, we propose a
methodology for nearest neighbor optimization which addresses
this problem by means of a look-ahead scheme. To this end,
two representative implementations are presented and discussed
in detail. Experimental evaluations show that, in the best case,
reductions in the number of SWAP gates of 56% (compared to the
state-of-the-art methods) can be achieved following the proposed
methodology.

I. INTRODUCTION

Fascinating progress is regularly being reported in the
domain of quantum computation. In particular, recent accom-
plishments such as the realization of a highly coherent qubit [1]
(the quantum-equivalent to a conventional bit) or the imple-
mentation of a scalable and fault-tolerant qubit architecture [2]
received interest. Nevertheless, many obstacles prevent the
realization of a practical and affordable quantum computer.

Among those, fault-tolerance stands out to be a prominent
one. To address that, error correcting codes, such as Steane
or surface code is widely being accepted [2]. But these,
however, depend on so called nearest-neighbor interactions,
i.e. allow for operations on adjacent qubits only. Furthermore,
also recent progresses in two-qubit gate operations [3], quan-
tum simulators [4], quantum error correction [5], or circuit
implementations [6], [7] unanimously assume nearest-neighbor
interactions. While there is an effort to enable interaction be-
tween remote qubits [8], it assumes the underlying architecture
to be nearest neighbor-compliant in order to leverage on its
fault-tolerance ability. Hence, how to ensure nearest neighbor
interaction on qubits is an important issue in the design of
quantum circuits.

In order to ease these developments, researchers recently
developed various EDA methods for nearest neighbor opti-
mization. To this end, several schemes have been proposed
which insert so-called SWAP gates in order to “move” non-
adjacent qubits onto adjacent positions. In [9], it has been
shown that the underlying problem is computationally very
expensive (in fact, exact approaches are applicable to rather
small circuits only). As a consequence, researchers focused
on heuristics in order to efficiently obtain a nearest neighbor,
but also compact circuit (a review on related work is later
provided in Section III-A). However, all these works inherit the
drawback that the decision how to explicitly place the SWAP
gates has mainly been made without considering the effect the
resulting “movement” of qubits may have to the remaining
circuit.

This work introduces a heuristic which aims for tack-
ling that problem by additionally incorporating a look-ahead
methodology. The general idea is to determine all possible
options on how to “move” qubits together in order to make
them adjacent. Then, the one is chosen which has the best
impact to the following gates. In order to evaluate the pro-
posed methodology, two representative implementations are
presented and discussed which allow for an efficient but also
meaningful estimate about the effect of applied SWAP gates.

We provide experimental validation to claim that the pro-
posed heuristic significantly outperforms the state-of-the-art
heuristic algorithms for a wide range of benchmarks. At the
same time, we show that the precise implementation of the
look-ahead methodology has a significant impact on what
improvements can be gained. Overall, following the proposed
methodology, reductions in the number of SWAP gates of
56% can be achieved in the best case. Evaluations have been
conducted on 1D as well as 2D quantum architectures.

In the following, Section II revisits the basics on nearest
neighbor quantum circuits. Afterwards, the considered problem
is motivated before the general idea of the proposed method-
ology is sketched in Section III. Section IV describes the
solution including two implemented schemes of the look-ahead
methodology. Limitations as well as how to overcome those
are discussed in Section V before results of our experimental
evaluations are summarized in Section VI. Finally, the paper
is concluded in Section VII.

II. NEAREST NEIGHBOR QUANTUM CIRCUITS

Quantum computing relies on manipulating quantum bits
(qubits) rather than conventional bits. A qubit may assume
any state represented by the linear superposition of the basis
states |0〉 and |1〉. The manipulations are performed by apply-
ing specific unitary operations U . Commonly used quantum
operations include the Hadamard operation H (setting a qubit
into superposition), the phase shift operation S, as well as the
NOT operation X . Details on these operations are not relevant
in the remainder of this work, but can be found e.g. in [10]. The
application of a unitary operation is eventually represented by
means of quantum gates, i.e. an k-qubit quantum gate applies
a 2k×2k unitary matrix to the corresponding qubits. This leads
to the following definition of a quantum circuit used in this
work.
Definition 1. A quantum circuit is a cascade C = g1g2 . . . g|C|
of quantum gates gi, where |C| denotes the total number of
gates. The number of qubits is denoted by n. Usually, quantum
circuits are composed of unary gates simply applying the
respective unitary operation on a single qubit or controlled
quantum gates over two qubits. In the latter case, a gate
operates on a control qubit at position ci and a target qubit
at position ti.
Example 1. Consider the circuit depicted in Fig. 1(a) com-
posed of four gates, i. e. C = g1g2g3g4. Control qubits are
denoted by a black circle, while target qubits are denoted by U .

Originally, qubits in a quantum circuit have been arranged
in a 1-dimensional (i.e. linear) fashion where each qubit is
placed next to each other. Fig. 1(a) shows an example of
such a circuit. However, recent technological developments
(e.g. [11], [12], [13]) also lead to the consideration of 2-
dimensional arrangements where qubits are placed according
to a grid-structure. In this case, the circuit from Fig. 1(a) would
be realized as sketched in Fig. 1(b). Such arrangements can
be extended to higher dimensions eventually leading to multi-
dimensional quantum circuits.
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Fig. 1. Quantum circuits
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Fig. 2. Nearest neighbor quantum circuits
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Fig. 3. Local reordering

Moreover, technological constraints for certain technolo-
gies and applications (see e.g. [2], [3]) limit the interaction
distance between the qubits and, hence, only allow the appli-
cation of gates between adjacent (i.e. nearest neighbor) qubits.
For the 1D circuit depicted in Fig. 1(a) and the 2D circuit
depicted Fig. 1(b), this only holds for gate g4. All other gates
have to be made nearest neighbor-compliant. To this end, so
called SWAP gates can be utilized.
Definition 2. A SWAP gate over two qubits qi, qj transforms
(q1, . . . , qi−1, qi, qi+1 . . . , qj−1, qj , qj+1, . . . , qn) to
(q1, . . . , qi−1, qj , qi+1 . . . , qj−1, qi, qj+1, . . . , qn), i.e. simply
swaps the value of the two qubits qi and qj .

More precisely, nearest neighbor-compliance of a quantum
circuit can be achieved by adding adjacent SWAP gates in front
of each gate gi with non-adjacent control and target qubits
to “move” the control (target) qubit of gi towards the target
(control) qubit until they become adjacent. Afterwards, SWAP
gates are added to restore the original ordering of the qubits.
Example 2. Fig. 2(a) exemplary shows the circuit previously
considered in Fig. 1(a) which has been made nearest neighbor-
compliant by inserting additional SWAP gates (SWAP gate
connections are denoted by×). In a similar fashion, this can be
applied to the 2D circuit from Fig. 1(b) as shown in Fig. 2(b)1.

III. MOTIVATION AND GENERAL IDEA

Ensuring nearest neighbor compliance by inserting SWAP
gates has heavily been considered in the past and is an
established procedure to satisfy the underlying technological
constraints. Various solutions have been proposed for this
purpose. In this section, we briefly outline the related work
and discuss their main drawback to be addressed in this paper.
Based on this, we describe the general idea of an alternative
nearest neighbor optimization methodology which overcomes
this drawback.

A. Related Work and Motivation
According to [9], approaches for nearest neighbor opti-

mization of quantum circuits can roughly be divided into
approaches following a global reordering scheme (see e.g. [9],
[14]) and approaches following a local reordering scheme (see
e.g. [15], [14], [16], [17], [18], [9]). Since the local reordering
scheme allows for better results (also confirmed in [9] by
means of exact results), we consider this optimization scheme
in the following.

Here, SWAP gates may be applied before each non-
adjacent gate in order to change the order of the qubits.
However, in contrast to the naive scheme sketched before
by means of Fig. 2, no SWAP gates are added to restore

1Note that between gates g2 and g3 as well as between gates g3 and g4,
the tuple of identical SWAP gates have been omitted due to space limitations.
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Fig. 4. Options to “move” qubits (gray rectangle highlights SWAP region)

the original ordering of the qubits. Instead, the respectively
resulting qubit order is applied to all remaining gates. As an
example, Fig. 3 shows two nearest neighbor quantum circuits
(derived from the quantum circuits shown in Fig. 1) which
have been determined by following a local reordering scheme.
As can be seen, this considerably reduces the number of SWAP
gates.

However, a main issue remains: For each non-adjacent gate
which is considered, a decision has to be made how exactly
the corresponding control/target qubits are “moved” together.
In fact, several options exists for this. More precisely:
• In 1D architectures, the control qubit can be “moved”

to the target qubit, the target qubit can be moved to
control qubit, or both qubits can be moved together. This
is illustrated in Fig. 4(a).

• In 2D architectures, the control qubit and the target
qubit can be “moved” to any adjacent position within
a rectangle spanned by the original positions of these
qubits. This is illustrated in Fig. 4(b)2.

In the following, we call the possible nearest neighbor-
compliant positions SWAP regions. In either case, the precise
“movement” influences the qubit/target positions of all follow-
ing gates and, by this, has a significant effect to the overall
costs (i.e. the number of SWAP gates) obtained by nearest
neighbor optimization. This is illustrated by the next example:
Example 3. Consider the first gate g1 in the 1D circuit shown
in Fig. 1(a). Following most of the established approaches
for nearest neighbor optimization, SWAP gates could have
been added as already shown in Fig. 3(a), i.e. the control
qubit is “moved” towards the target qubit. However, as shown
in Fig. 5(a), “moving” the target qubit towards the control
qubit leads to a much better permutation of qubits in which
(1) gates g2 and g3 become nearest neighbor-compliant as
well and (2) where only one further SWAP gate is required to
establish nearest neighbor compliance for gate g4.

2Note that it is of course also possible to move the qubits to (adjacent)
positions outside the areas sketched in Fig. 4. But this would unnecessarily
increase the (local) costs and, hence, is not further considered.
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Fig. 5. Exploiting the options for “moving” qubits together.

Similar issues can be observed in the 2D quantum circuit
shown in Fig. 1(b). Established local reordering schemes
may motivate swapping qubits q1 and q4 in order to make
gate g1 nearest neighbor-compliant (as already discussed us-
ing Fig. 3(b)). But all other permutations within the rectangle
spanned by these qubits are possible as well. In fact, just
swapping qubits q3 and q4 is the much better choice as
it already makes not only g1 but the entire circuit nearest
neighbor-compliant (as shown in Fig. 5(b)).

Overall, previously proposed solutions for nearest neighbor
optimization do not consider the effect a “movement” of qubits
may have to the remaining circuit. But since the eventually
chosen permutation may have a significant impact on the total
number of SWAP gates, in the rest of this paper, we consider
the question of how to best exploit the options sketched in
Fig. 4 for nearest neighbor optimization.

B. Proposed Solution
In order to determine the best option of how to “move”

qubits together, we propose a heuristic methodology which
employs a look-ahead scheme in order to get an efficient but
also meaningful estimate about the impact of an option. The
general idea is as follows: Each time a non-adjacent gate gi
is considered, the available options are evaluated by means of
the remaining gates C ′ = gi+1 . . . g|C|. Then, the option which
has the best impact to C ′ is chosen. In order to measure the
impact, nearest neighbor costs defined as follows are applied:
Definition 3. The nearest neighbor costs (nnc) for a gate g
are defined as

nnc(g) =

{
0 g is unary
(
∑n
i=1 |ti − ci|)− 1 otherwise

where ci and ti denote the position in the ith dimension of the
control and target qubit, respectively. In other words, nearest
neighbor costs are either zero or defined by the Manhattan
distance between the control and target qubit minus one. In
order to determine the nearest neighbor costs with respect to
a given permutation π of qubits (e.g. caused by an option to be
considered), we apply nncπ(g) = (

∑n
i=1 |π(ti)− π(gi)|)− 1.

For a cascade of gates, i.e. a (sub-)circuit C, the nearest
neighbor costs are defined as nnc(C) =

∑
g∈C nnc(g).

Note that it may be necessary to determine the costs of
the composition of two permutations π′ and π′′. For this,
we use the common ◦ notation, i.e. π′′ ◦ π′, to indicate that
permutation π′′ is applied after applying permutation π′.
Example 4. Consider the circuit depicted in Fig. 1(a). The
first gate has nearest neighbor costs of nnc(g1) = 1, whereas
the total circuit has costs of nnc(C) = 3. A permutation π
that swaps qubits q1 and q2 would decrease the costs of the
first gate by one while, at the same time, increasing the costs
of the next two gates by a total of two. Since the total costs of
the resulting circuit would be 4, it might worthwhile to explore
other options of how to make g1 nearest neighbor-compliant.

Following the proposed look-ahead methodology provides
an alternative which may overcome the drawbacks of previ-
ously proposed solutions for nearest neighbor optimization.
But details on how to apply the scheme – in particular, how to
observe the following gates and how to decide for an option
based on these observations – remain to be addressed. In
fact, several implementations of a look-ahead methodology
exists. In the following, we explicitly propose and discuss
two representatives of this scheme. As the evaluation later
in Section VI shows, the precise implementation will have a
significant effect on what improvements can be gained from
the methodology.

IV. LOOK-AHEAD SCHEMES
FOR NEAREST NEIGHBOR OPTIMIZATION

The following sections describe two schemes that employ
different implementations of the proposed look-ahead method-
ology. That is, different schemes on (1) how to “look-ahead”
(i.e. how to observe the following gates) and (2) how to add
SWAP gates into the circuit are proposed. The first scheme
follows thereby a joint consideration of the following gates,
while the second schemes applies an iterative approach.

A. Joint Consideration Scheme
The main idea of the first scheme is to consider all

gates C ′ = gi+1 . . . g|C| following gi in a joint fashion.
From the available options of how to “move” the qubits of gi
together, the one is chosen which has the least negative effect
to |C ′| (with respect to nearest neighbor costs).

To describe the algorithm in more detail, the following
notation of a circuit-tail is applied.
Definition 4. For a given circuit C = g1g2 . . . g|C|,
a circuit-tail of C after gate gi is defined
as Ci := gi+1, gi+2, . . . , g|C|.

The algorithm proceeds as follows: For a given circuit C,
iterate over all gates gi. If the gate is not nearest neighbor-
compliant (i.e. nnc(gi) > 0), consider all possible permu-
tations within the SWAP region (see Fig. 4) which would
make the gate nearest neighbor-compliant. Next, determine
the impact of all these possibilities to the circuit-tail Ci. The
permutation that results in the smallest value of nnc(Ci) is
chosen and appropriate SWAP gates are added in front of gi.
This procedure is repeated until the end of the circuit is
reached.

While doing that, two further issues have to be addressed:
• The permutation leading to the smallest value of nnc(Ci)

is not necessarily unique. Hence, if more than one permu-
tation achieving the smallest value is obtained, the directly
following gate gi+1 is additionally considered.

• When calculating nnc(Ci), the costs of establishing the
considered permutation π (i.e. the number of SWAP gates
required to generate π) has to additionally be taken into
account.

Overall, this leads to a more formal description of the
scheme as follows:

1) Initialize the circuit’s permutation πC with the identity
function.

2) Iterate over all gates gi ∈ C. If nncπC
(gi) > 0 then

a) Store all permutations π with nncπ◦πC
(gi) = 0 from

gi’s SWAP region in Π.
b) Determine a permutation π∗ ∈ Π that minimizes the

nearest neighbor costs of the circuit-tail, i.e. π∗ =
minπ∈Π{nncπ∗◦πC

(Ci)}.
c) Insert SWAP gates in front of gi that establishes the

permutation π∗.
d) Update πC to incorporate π∗ (i.e. the new circuit

permutation is π∗ ◦ πC).
3) Return the nearest neighbor-compliant circuit C.
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Example 5. Consider again the circuit C shown in Fig. 1(a)
with πC = (q1, q2, q3, q4). The first gate has costs of
nnc(g1) = 1. Therefore, a permutation to make this gate
nearest neighbor-compliant needs to be found. There are two
options within the SWAP region that achieve this: π1 that
swaps q1 and q2 and π2 that swaps q2 and q3. As π1 would
lead to costs of 4 (see Example 4) and π2 would lead to costs
of 1, π2 is chosen. After inserting SWAP gates so that π2
is established, the algorithm continues until g4. Here the
procedure is applied again eventually leading to the circuit
already shown before in Fig. 5.

B. Iterative Scheme
As an alternative scheme, we propose an approach which

does not decide for or against an option by jointly considering
the following gates at once, but in an iterative fashion. More
precisely, all gates gj of the circuit-tail Ci following the
currently considered gate gi are considered one after another.
For each gate gj , it is checked whether the positions of the
qubits of gj motivate a particular option to be applied for
“moving” the qubits of gate gi. For this purpose, we can
distinguish between three different cases which are sketched
in Fig. 6 for 1D circuits3 (g1 being the currently considered
gate):

1) The qubits of qj are positioned completely outside of the
SWAP region defined by gate gi (as sketched by gate g2
in Fig. 6). Then, the gate gj does not motivate a particular
option of how to “move” the qubits of gate gi and, hence,
gj is ignored.

2) The qubits of qj are positioned completely inside of the
SWAP region defined by gate gi (as sketched by gate g3 in
Fig. 6). Then, the set of possible options to be applied for
gate gi reduces to only those permutations which reduce
the costs of gj . In the sketch from Fig. 6, “moving”
the target qubit of g1 towards the control qubit is still
an option (as it reduces the nearest neighbor costs for
both, g1 and g3), while “moving” the control qubit of g1
towards the target qubit is not an option anymore (as this
would increase the nearest neighbor costs of g3).

3) The qubits of qj are positioned partially inside of the
SWAP region defined by gate gi (as sketched by gates g4
and g5 in Fig. 6). Here, it depends on the precise
configuration of gj . In the case of gate g4, “moving” the
target qubit of g1 towards the control qubit would be a
preferred option (as, again, it reduces the nearest neighbor
costs for both, g1 and g4). However, this is not the case
in the scenario of gate g5, hence this “movement” would
not be used in this case.

Eventually, this leads to the following more formal descrip-
tion of the scheme:

3The same cases can analogously be considered for 2D circuits.

1) Initialize the circuit’s permutation πC with the identity
function.

2) Iterate over all gates gi ∈ C. If nncπC
(gi) > 0 then

a) Set source = c, target = t, S = ∅, j = i+ 1
b) Retrieve SWAP gates making gi nearest neighbor-

compliant by applying the following sub-algorithm
i) If either source and target are equal or nearest

neighbor-compliant, return ∅.
ii) If the end of the circuit is reached, choose a direct

permutation from source to target, and return its
corresponding SWAP gates.

iii) Create the SWAP region defined by source and
target.

iv) If nncπC
(gj) = 0 or if gj is outside the SWAP

region, increase j by one and continue with Step (ii)
(Case 1 from above).

v) Try to determine a SWAP gate g∗ within the SWAP
region that reduces the costs of gj . If no such gate
exists, increase j by one and continue with Step (ii)
(Case 2/3 from above).

vi) Let π be the permutation established by g∗.
vii) Let L and R be the SWAP gates determined by

applying Steps (i) to (vii) to the paths from the
control and target qubit of gi to the gate g∗ (i.e. set
source and target accordingly). In the recursion,
use π ◦ πC as the circuit permutation. Return L ◦
g∗ ◦R.

c) Add the SWAP gates retrieved from Step (b) to C.
d) Update πC to incorporate the permutation π that cor-

responds to the SWAP gates retrieved from step (b)
(i.e. the new circuit permutation is π ◦ πC).

3) Return the nearest neighbor-compliant circuit C.
Example 6. Consider the circuit C shown in Fig. 6. The
gate g1 has costs of 1. The following gate g2 is not within
the SWAP region and, therefore, skipped. Swapping qubits
q4 and q5 makes gate g3 nearest neighbor-compliant as it is
within the region. Therefore, the permutation πC is updated to
incorporate the corresponding SWAP gate. Now, two new paths
are investigated. One is empty (there is no qubit between the
former target of g3 and the end of the SWAP region, i.e. R = ∅)
and the other one is between the updated target of g3 and the
control of g1. For this path, the SWAP region does not contain
any further gates. This allows to directly move gi’s control
qubit downwards using a single SWAP gate (i.e. L consists
of a single gate only). The resulting SWAP cascade for g1 is
shown in Fig. 7.

V. LIMITATIONS OF THE LOOK-AHEAD METHODOLOGY

Following the look-ahead methodology proposed above
leads to a nearest neighbor optimization approach which bases
its decision how to “move” qubits of a gate gi together on its
circuit-tail Ci. As motivated by the discussions and examples
from above, this often proves to be beneficial. However,
the general idea that the circuit-tail should be taken into
account has its limitations when gates of Ci which follow
rather late after gi suddenly influence how qubits are “moved”
together. This becomes particularly crucial when large circuits
composed of hundreds or thousands of gates are considered.
For example, it is clearly not beneficial anymore to consider
e.g. a gate g1429 in order to evaluate a decision e.g. for gate g14.

In order to address that, the proposed look-ahead schemes
shall only be applied to a restricted circuit-tail. To this end,
we apply the concept of a circuit window:

Definition 5. For a given circuit C = (g1, g2, . . . , g|C|), a
circuit window of size w starting at position i is defined as
Ci,w = (gi+1, gi+2, . . . , gi+w).

Applying the proposed look-ahead schemes not on the
entire circuit-tail Ci but on a circuit window Ci,w restricted
by w avoids the negative impacts of gates which follow rather
late after gi.
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Fig. 8. Limitations of the look-ahead methodology

Example 7. Consider the circuit shown in Fig. 8(a) and let’s
assume that the look-ahead scheme proposed in Section IV-A
is applied in order to evaluate the options how to make
gate g1 nearest neighbor-compliant. Then, Fig. 8(b) shows the
resulting circuit when the entire circuit-tail is considered. In
contrast, a much cheaper circuit (as shown in Fig. 8(c)) results
if only a circuit window Ci,2 restricted by w = 2 is considered.

Of course, an open question remains to what value to set
the size w of the respective circuit windows. Together with
a comparison to previously proposed approaches for nearest
neighbor optimization, this question is covered in the next
section.

VI. EXPERIMENTAL EVALUATION

In this section, we report and discuss the most important
results obtained by our experimental evaluation of the proposed
look-ahead methodology for nearest neighbor optimization.
For this purpose, the representative schemes as described in
Section IV have been implemented in Java. Evaluations have
been performed by means of benchmark circuits (taken from
RevLib [19]) which also have been applied in respective related
work (e.g. [14], [20]). In a first series of evaluations, we
consider the effect of the window sizes to the look-ahead
scheme as introduced in Section V. Afterwards, a numeri-
cal comparison to results of previously proposed solutions
(namely [14], [20]) is provided. In contrast to most of the
related work, we consider both, 1D and 2D architectures of
quantum circuits.

All evaluations have been conducted on an Xubuntu ma-
chine with a 2.6 GHz Intel Core i5 CPU and 8 GB of main
memory. All results have been obtained in negligible run-time
(i.e. no experiment required significantly more than one CPU-
minute) which is why, for sake of clarity, we omitted a detailed
run-time discussion in the following4.

A. Effect of Windows

As discussed in Section V, the window size, which is
applied for the look-ahead scheme, may have a significant
impact on the final result. Hence, in a first series of experiments
we evaluate this effect. To this end, the approaches presented
in Section IV have been applied with different window sizes.
Afterwards, the respectively obtained number of added SWAP
gates has been compared to the results obtained by the ap-
proaches with no consideration of windows.

4Recently proposed approaches such as [20] often have run-times of up to
30 CPU minutes.

TABLE I. EFFECT OF WINDOWS

1D Architecture 2D Architecture
Window size Window size

Benchmark Gates d 5 10 20 30 d Dim. 5 10 20 30 d

QFT7 21 -45% 0% 0% 0% 33 5x2 -20% -35% 0% 0% 20
QFT8 28 -21% -8% 0% 0% 39 4x2 -39% -11% -21% 0% 28
QFT9 36 -9% 0% 0% 0% 54 3x3 -29% -29% 3% -13% 31
QFT10 45 -32% -23% -19% 0% 94 5x3 -28% -30% -11% -13% 53
4gt10-v1_81 36 -4% 0% 0% 0% 25 3x2 0% -17% 17% 0% 18
cycle10_2_110 1212 -30% -36% -42% -33% 1659 3x4 -37% -29% -33% -38% 775
ham15_108 458 -5% -5% -7% -7% 568 5x3 -12% -13% -17% 0% 270
ham7_104 87 -18% -18% -16% -18% 88 3x3 0% -18% -11% -4% 45
hwb5_55 106 -15% 0% -3% 0% 78 3x2 -34% -9% -9% -5% 56
hwb6_58 146 -12% -13% -5% 3% 128 2x3 -29% -23% -11% -2% 83
hwb7_62 2659 -40% -39% -39% -31% 3431 3x3 -37% -38% -36% -32% 1682
hwb8_118 16608 -42% -40% -40% -34% 22838 3x3 -39% -41% -39% -33% 10735
hwb9_123 20405 -38% -39% -37% -33% 31262 4x3 -37% -39% -36% -31% 13909
mod5adder_128 81 -31% -10% -4% -9% 67 3x2 -38% -23% -36% -26% 53
plus127mod8192_162 65455 -39% -42% -44% -40% 113223 5x4 -33% -38% -40% -39% 45988
plus63mod4096_163 29019 -39% -41% -44% -38% 45918 3x5 -34% -39% -40% -37% 19460
plus63mod8192_164 37101 -35% -39% -41% -38% 60345 5x3 -28% -33% -35% -33% 23935
rd53_135 78 -13% -14% -13% -13% 77 3x3 -21% -27% -38% -29% 48
sym9_148 4452 -39% -34% -39% -36% 5111 4x4 -41% -43% -40% -37% 2538
urf1_149 57770 -20% -20% -20% -16% 57452 3x3 -19% -15% -13% -11% 36281
urf2_152 25150 -22% -22% -20% -18% 23679 2x4 -23% -18% -14% -14% 16697
urf3_155 132340 -24% -24% -24% -23% 143210 4x3 -20% -17% -15% -12% 87154
urf5_158 51380 -21% -22% -22% -19% 51400 3x3 -20% -15% -14% -11% 32259
urf6_160 53700 -21% -25% -26% -26% 73994 4x4 -15% -16% -14% -14% 37559
Shor3 2076 -9% -7% 2% -3% 2312 4x3 -32% -21% -16% -14% 1487
Shor4 5002 -25% -15% 0% 1% 7443 3x4 -28% -18% -12% -9% 3833
Shor5 10265 -32% -20% -18% -11% 18073 5x4 -23% -20% -13% -1% 8269
Shor6 18885 -42% -35% -20% -14% 39209 4x6 -30% -27% -20% -16% 17914

Table I summarizes the results for the scheme proposed
in Section IV-A5. The first two columns provide the name
of the respectively considered benchmark circuits (as given
in RevLib [19]) as well as its total number d of gates (note
that unary gates are not considered here as they are irrelevant
for nearest neighbor optimization). Afterwards, the results
obtained by the scheme are reported for window sizes of 5, 10,
20, 30, and d (i.e. without any window). In order to ease the
evaluation, we used the configuration without the consideration
of window circuits as baseline (i.e. provide absolute values
here). All remaining results are given in proportional relation
to that baseline. Results are reported for 1D as well as 2D
architectures (in case of 2D architectures, the dimension of
the respectively considered 2D grid is additionally provided).

The results clearly show that the consideration of window
circuits has a significant effect on the number of required
SWAP gates. By this, the discussions conducted in Section V
are confirmed. In the best cases, improvements of up to 45%
can be achieved when not all following gates are respectively
considered but just a subset defined by the window size.
Concerning the best window size, the results slightly differ.
But overall, it can be concluded that the windows size should
be rather small – in most of the cases, no significant further
improvements are observed with window constituted with
more than 20 gates6.

B. Comparison to Related Work

In a second series of experiments, we compared the re-
sults obtained by our approach to the state of the art. Since
corresponding evaluations have been conducted focusing on
1D architectures or 2D architectures only, we consider the
approach proposed in [14] for 1D architectures and proposed
in [20] for 2D architectures. Both represent recently pro-
posed methodologies for nearest neighbor architectures for the
respective architectures and, hence, guarantee an up-to-date
evaluation.

The results of the comparisons are summarized in Table II.
Again, the first two columns provide the name of the re-
spectively considered benchmark circuits as well as its total
number d of gates. Afterwards, the best results obtained by
the approaches presented in Section IV as well as the best
results obtained by the approaches from [14], [20] are listed –
again for 1D as well as 2D architectures. Additionally, we list
the proportional improvement of the proposed approaches.

As can be seen, the look-ahead methodology proposed in
this work leads to substantial improvements in the majority of

5Similar results have been obtained for the scheme proposed in Sec-
tion IV-B, but precise numbers are omitted due to space limitations.

6In fact, we did not only apply fix window sizes (i.e. 5, 10, 20, ...), but
also evaluated window sizes depending on the total number of gates or the
total number of gates left to be considered. In all these configurations similar
results have been obtained.



TABLE II. COMPARISON TO RELATED WORK

1D Architecture 2D Architecture
Lookahead-joint Lookahead-iterative Prev. Work Improvement Lookahead-joint Lookahead-iterative Prev. Work Improvement

Benchmark Gates d (Sect. IV-A) (Sect. IV-B) [14] Scheme 1 Scheme 2 (Sect. IV-A) (Sect. IV-B) [20] Scheme 1 Scheme 2
QFT7 21 18 23 29 -38% -21% 13 22 18 -28% 22%
QFT8 28 31 33 41 -24% -20% 17 25 18 -6% 39%
QFT9 36 49 53 66 -26% -20% 22 27 34 -35% -21%
QFT10 45 64 67 96 -33% -30% 37 43 53 -30% -19%
3_17_13 13 6 8 5 20% 60% 5 8 6 -17% 33%
4gt10-v1_81 36 24 38 29 -17% 31% 15 22 16 -6% 38%
aj-e11_165 59 33 42 43 -23% -2% 16 37 24 -33% 54%
cycle10_2_110 1212 966 2096 2193 -56% -4% 483 824 839 -42% -2%
ham15_108 458 531 838 803 -34% 4% 223 355 328 -32% 8%
ham7_104 87 72 84 86 -16% -2% 37 53 48 -23% 10%
hwb5_55 106 66 101 86 -23% 17% 37 64 45 -18% 42%
hwb6_58 146 111 146 140 -21% 4% 59 85 79 -25% 8%
hwb7_62 2659 2067 3406 3480 -41% -2% 1050 1703 1688 -38% 1%
hwb8_118 16608 13176 22877 21767 -39% 5% 6316 11096 11027 -43% 1%
hwb9_123 20405 18988 32405 32979 -42% -2% 8522 14459 15022 -43% -4%
mod5adder_128 81 46 85 79 -42% 8% 33 45 41 -20% 10%
plus127mod8192_162 65455 63364 128510 136820 -54% -6% 27549 52333 53598 -49% -2%
plus63mod4096_163 29019 25617 51824 54999 -53% -6% 11764 22160 22118 -47% 0%
plus63mod8192_164 37101 35472 73218 77753 -54% -6% 15484 29939 29835 -48% 0%
rd53_135 78 66 85 96 -31% -11% 30 47 39 -23% 21%
sym9_148 4452 3103 6297 5353 -42% 18% 1455 2799 2363 -38% 18%
urf1_149 57770 45730 60301 62019 -26% -3% 29252 41058 38555 -24% 6%
urf2_152 25150 18428 24861 23608 -22% 5% 12872 18101 16822 -23% 8%
urf3_155 132340 108321 145250 140908 -23% 3% 69693 95485 94017 -26% 2%
urf5_158 51380 39852 53202 54038 -26% -2% 25887 36813 34406 -25% 7%
urf6_160 53700 54815 64600 91563 -40% -29% 31540 43100 43909 -28% -2%
Shor3 2076 2112 2529 3353 -37% -25% 1010 1485 1710 -41% -13%
Shor4 5002 5616 6128 9510 -41% -36% 2757 3807 4264 -35% -11%
Shor5 10265 12221 12358 22846 -47% -46% 6344 8504 8456 -25% 1%
Shor6 18885 22829 23156 41551 -45% -44% 12468 15970 20386 -39% -22%

the cases. At the same time, it can be observed that the precise
implementation of this methodology has a significant impact
on what improvements can be gained: While the scheme
from Section IV-A performs very well on almost all bench-
mark circuits, limited improvements can be observed using
the scheme from Section IV-B. But overall, the look-ahead
methodology leads to substantial improvements compared to
recently proposed approaches for both 1D and 2D architectures
– in the best case, the number of SWAP gates can be reduced
by to 56% and 49%, respectively.

VII. CONCLUSIONS

In this work, we proposed a methodology for nearest
neighbor optimization of quantum circuits which, in con-
trast to previous work, incorporates a look-ahead scheme.
By this, SWAP gates – added to make a particular gate
nearest neighbor-compliant – are chosen with respect to their
impact to the following gates. Two different schemes are
presented and discussed as possible implementations of the
proposed methodology. An experimental evaluation confirmed
that the precise implementation of the proposed look-ahead
methodology has a significant impact on what improvements
can be gained. Overall, improvements of up to 56% have been
obtained in the best case. The proposed methodology has been
evaluated for 1D and 2D quantum circuits.
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